a2 United States Patent

Ahmad et al.

US009152445B2

US 9,152,445 B2
Oct. 6, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

(58)

SOFTWARE APPLICATION PLACEMENT
USING COMPUTING RESOURCE
CONTAINERS

Applicant: VMware, Inc., Palo Alto, CA (US)

Inventors: Irfan Ahmad, Mountain View, CA (US);
Anne Marie Holler, Los Altos, CA

(US); Mustafa Uysal, Fremont, CA (US)

Assignee: VMware, Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/332,291

Filed: Jul. 15, 2014

Prior Publication Data

US 2014/0331227 Al Now. 6, 2014

Related U.S. Application Data

Continuation of application No. 13/273,064, filed on
Oct. 13, 2011, now Pat. No. 8,782,242.

Int. Cl1.

GO6F 15/177 (2006.01)

GO6F 9/455 (2006.01)

HO4L 12/24 (2006.01)

GO6F 9/50 (2006.01)

U.S. CL

CPC ... GO6F 9/45533 (2013.01); GOGF 9/5033

(2013.01); HO4L 41/5054 (2013.01)
Field of Classification Search
CPC .o HOAL 41/08-41/0836; HO4L
41/5041-41/5054; GOGF 9/45533-2009/45595
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,620,953 Bl 11/2009 Tene et al.

7,757,116 B2 7/2010 Brown et al.

7,934,035 B2 4/2011 Miloushev et al.

7,971,047 Bl 6/2011 Vlaovic et al.

7,996,719 B2 8/2011 Bernabeu-Auban et al.

8,112,527 B2 2/2012 Kawato

8,209,687 B2 6/2012 Yuyitung et al.

8,261,282 Bl 9/2012 Ponnapur et al.

8,352,611 B2 1/2013 Madduri et al.

8,423,998 B2 4/2013 Iscietal.

8,510,590 B2 8/2013 Jietal.

8,533,724 Bl 9/2013 Theimer et al.

8,918,378 Bl1* 12/2014 Faithetal.cccccon.... 707/695
2002/0173984 Al* 11/2002 Robertson et al. 705/1

(Continued)
OTHER PUBLICATIONS

“Resource Management with VMWare DRS”, VMware, Inc., 2006.
Primary Examiner — Brendan Higa

(57) ABSTRACT

Embodiments associate software applications with comput-
ing resource containers based on placement rules. A place-
ment rule indicates that a first software application is to be
co-located with a second software application during execu-
tion of the first and second software applications and second
placement rule indicates that the first software application is
to be separated from the second software application when
the second placement rule is violated by enforcing the first
placement rule. The placement rule also indicates that the first
software application is to be separated from the second soft-
ware application during execution of the first and second
software applications and the second placement rule indicates
the first software application is to be co-located with the
second software application when the second placement rule
is violated by enforcing the first placement rule.

20 Claims, 6 Drawing Sheets

325 300

Client device

320 315 350
Management Resource
device manager

J

[

Host 1 Host 2
@b @i
235, 235, 235; 235 235
305 | 305,

(
]
Host 3 Host 4
235 235 235,
305, | 305,

{
310
Storage

networl

345

[

]

| Datastore 1 |

| Datastore 2 | | Datastore 3 |

330”7

340

US 9,152,445 B2

Page 2
(56) References Cited 2011/0246992 A1 10/2011 Kern
2011/0296429 Al 12/2011 Segmuller et al.
U.S. PATENT DOCUMENTS 2011/0302578 Al 12/2011 Isciet al.

2012/0042311 Al 2/2012 Biran et al.
2006/0136761 Al 6/2006 Frasier et al. 2012/0102199 Al* 42012 Hopmannetal. ... 709/226
2008/0244569 Al 10/2008 Challener et al. 2012/0123825 Al 52012 Biran etal.
2009/0007099 Al 1/2009 Cummings et al. 2012/0180039 Al* 7/2012 Braveryetal. ... 717/178
2009/0037572 A1* 2/2009 Gebhartetal. 709/224 2012/0266166 Al ~ 10/2012 Farkas et al.
2009/0037585 Al 2/2009 Miloushev et al. 2012/0324071 Al 12/2012 Gulati et al.
2009/0070771 Al 3/2009 Yuyitung et al. 2012/0324112 Al 12/2012 Dow et al.
2009/0210527 Al 8/2009 Kawato 2013/0042003 Al* 2/2013 Francoetal. ... 709/226
2009/0300414 Al 12/2009 Huang et al. 2013/0047006 Al 2/2013 Brown et al.
2011/0214005 Al 9/2011 Biran et al. 2013/0067277 Al 3/2013 Mummidi
2011/0225277 Al 9/2011 Freimuth et al. 2013/0097601 Al 4/2013 Podvratnik et al.
2011/0231696 Al 9/2011 Jietal 2013/0263120 Al 10/2013 Patil et al.

2011/0238803 Al 9/2011 Kern
2011/0246627 Al 10/2011 Kern * cited by examiner

US 9,152,445 B2

Sheet 1 of 6

Oct. 6, 2015

U.S. Patent

01
i
JuSUOdWIOD JUBWRARId H-17T
Jusuodwod 3Ny 771
Jusuodwod uoneP.Lo) || 0zt
AIOWDI
91T
alolseiep \ &oﬁ
wo.4/0L : DDINSP
- > ulebeiors W | uonejussaid
1055900.4d
"Jul "WWwod \ . 4/ 01N
~ oomep || OHOMBN 0T nduy Jasn
jo0wal / / / /
woJi4/ol PIT (1T WHH OTT

00T

80T

I "OId

U.S. Patent Oct. 6, 2015 Sheet 2 of 6 US 9,152,445 B2

o a0y
i VM Applications 27 2352 235N i
| 235, ces 5
i Guest Operating System 265 M M|
Virtual Hardware Platform 240 v v
2 21'{3""21'5(\) """" 2 B’Q """ 2’5’§"": .
ak User Input|[Comm] ||} 240, b 240y

i |1 |Processor|| Memory . o i | i
o Device Int. | i et ! :
e ! WSIEE b :
275, Virtual Machine Monitor 107 2 | o7 N

i 215 Device Driver Layer Comm. Int. Driver :

: ——- 220 i

i Virtual Bridge 225] !

Hypervisor 210 T_

HW PLATFORM 20 L 4

Network User Input
Processor Memory Comm. Int. Device
/ / / /
102 104 112 110

US 9,152,445 B2

Sheet 3 of 6

Oct. 6, 2015

U.S. Patent

(072 %N

~SE€

~0€€

¢ aloisere(

Z aloisele(

| aloisele(

GpE
oMU
01
)
*S0¢ “50¢ “s0¢ i€
bgEe S€T SET S€T SET “SE7 GET ISET
WA WA || A —wa || A WA || WA || ma
b 1S0H € 1S0H Z 1S0H | 1SOH
|]
Jabeuew ’ e 90IABP
SIOMION
GOLDOwON_ uC@E@@mCN_\/_
05e
S0IABP JUBIID
\ T
00€ cze c

U.S. Patent Oct. 6, 2015 Sheet 4 of 6 US 9,152,445 B2
] 400
¥
Determine (e.g., receive) anti-
405 | affinity rule (first VM separated

from second VM), optionally with
separation level

e e e

Determine (e.g., receive)
configuration hierarchy and/or
performance metrics

e

Determine (e.g., receive/calculate)
failure correlations between
computing resources

A

415 |

Identify first computing resource
associated with first VM

A

420 |

Select failure correlations
corresponding to first computing
resource

»

Yes

~
-~

-~
~

~
<
~

\\\ ?//,’
428

b ¥om - "
| Report error |

e

-""More™~.
. _resources _ -

»

A

425 |

Select computing resource
corresponding to lowest failure
correlation
(and satisfying separation level)

~

Yes ~~~. resource violate another_.-

.

~
~

-
-

427 -7 . S~
-7 Willsecond "~~_

-~"VM at selected computing™~~

-~
-

-
-
-
-
-

~
~
~
~
~

rule?

430 \\I/N;/

Associate second VM with (e.g.,
migrate to) selected computing
resource

U.S. Patent Oct. 6, 2015 Sheet 5 of 6 US 9,152,445 B2

FIG. 5

500

Client device

315

Management

Network

device
505 | Computing Computing
resource resource
container 1 container 2
515_

| 510

Resource || Resource “-/515

U.S. Patent Oct. 6, 2015 Sheet 6 of 6 US 9,152,445 B2

FIG. 6 500

605 Determine (e.g., receive)
~— placement rule (affinity/anti-affinity
rule for first VM and second VM)

»
Lt

61(L Identify first container associated
with first VM

Placement
rule type?

Affinity Anti-affinity
(co-locate) (separate))
61\5 630
Select first container | container available

€.g., has sufficient

as target h No

l

P

617 -7 >~
/”ézcond \\;\ICI"at targ\e\t‘\ Select other
~< . -7 container as target
~~_violate another _- Yes 618
B
620 1N0 Repontemors i T~ 637
L . <~ second VM at target™~
Associate second T~ _violate anotherg/’/Ye;>
VM with (e.g., S~ rule?. o
transmit placement el
req. to) target 1N° 940
container Associate second
VM with (e.g.,
62\5 y transmit placement
Provide placement req. to) target
< rule to target container
container
v Placement J

No error? Yes

US 9,152,445 B2

1
SOFTWARE APPLICATION PLACEMENT
USING COMPUTING RESOURCE
CONTAINERS

CROSS REFERENCE TO RELATED
APPLICATION(S)

This application is a continuation of U.S. application Ser.
No. 13/273,064, filed Oct. 13, 2011, which issued on Jul. 15,
2014 as U.S. Pat. No. 8,782,242, which is incorporated by
reference herein.

BACKGROUND

Software applications, such as virtual machines (VMs),
may be executed by a group or “cluster” of host computing
devices. A management device may coordinate execution of
the software applications by hosts, ensuring, for example, that
at least one instance of a particular software application is
available whenever possible, or that the computing load asso-
ciated with execution of software applications is distributed
across hosts in the cluster.

A management device may control which host(s) executes,
and/or stores data related to, a software application, also
known as the “placement” of the software application. Fur-
ther, software application placement may be governed by
placement rules that specify a desired placement of a software
application with respect to another software application. For
example, an affinity rule specifies that a software application
should be co-located with one or more other software appli-
cations, whereas an anti-affinity rule specifies that a software
application should be separated from one or more other soft-
ware applications.

Placement rules may be enforced against specific comput-
ing resources, such as hosts or storage devices. For example,
an anti-affinity rule may be enforced by preventing two VMs
from being placed on the same host. However, the goal of a
placement rule—that two instances of the same software
application not be associated with the same point of failure,
for example—may not be consistently achieved by simply
placing the software applications on different resources. For
example, different resources may be correlated in terms of
failures and/or performance, such that a failure or perfor-
mance degradation associated with one resource is likely to
be concurrent with a similar failure or performance degrada-
tion of another resource.

Further, in some scenarios, a management device may have
limited access to computing resources, such that enforcement
of placement rules by the management device alone may be
infeasible. For example, computing resources such as distrib-
uted computing resources and data storage resources, may be
managed by a computing resource container that allocates
computing resource utilization among a plurality ofhardware
devices and prevents direct access to such hardware devices
by the management device. In such scenarios, the manage-
ment device may attempt to satisfy an affinity rule by placing
affined software applications in the same computing resource
container, for example. Similarly, the management device
may attempt to satisfy an anti-affinity rule by ensuring that
anti-affined software applications are never placed in the
same computing resource container. Such approaches may
result in undesired consequences, such as affined software
applications being placed on different hardware devices by
the computing resource container, or a portion of anti-affined

10

15

25

35

40

45

2

software applications not being placed on any computing
resource when a limited quantity of computing resource con-
tainers is available.

SUMMARY

One or more embodiments described herein facilitate
enforcing software application placement rules even when
computing resources are managed by computing resource
containers and not directly accessible to a management
device.

A placement rule may include an affinity rule indicating
that a first software application is to be co-located with a
second software application during execution of the first and
second software applications, or an anti-affinity rule indicat-
ing that the first software application is to be separated from
the second software application during execution of the first
and second software applications. A target computing
resource container is selected based on the placement rule and
a computing resource container that is associated with the
first software application. The second software application is
associated with the target computing resource container.
When the second software application is associated with the
same computing resource container that is associated with the
first software application, the placement rule may be provided
to the target computing resource container, such that the
target computing resource container may enforce the place-
ment rule.

This summary introduces a selection of concepts that are
described in more detail below. This summary is not intended
to identify essential features, nor to limit in any way the scope
of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary computing
device.

FIG. 2 is a block diagram of virtual machines that are
instantiated on a computing device, such as the computing
device shown in FIG. 1.

FIG. 3 is a block diagram of an exemplary cluster system
including computing devices and virtual machines.

FIG. 4 is a flowchart of an exemplary method for associat-
ing a software application with a computing resource based
on failure correlation information.

FIG. 5 is block diagram of an exemplary cluster system
including computing resource containers.

FIG. 6 is a flowchart of an exemplary method for associat-
ing a software application with a computing resource con-
tainer based on a placement rule.

DETAILED DESCRIPTION

Embodiments described herein facilitate enforcing place-
ment rules based on information about failure correlation
between computing resources and/or by delegating enforce-
ment of a placement rule to a computing resource container in
which software applications are placed.

In exemplary embodiments, failure correlations between
computing resources are determined, and “anti-affined” soft-
ware applications (e.g., software applications that are to be
separated per an anti-affinity rule) are placed on computing
resources with relatively low failure correlation. Further, the
failure correlations may be repeatedly determined, and
changes in failure correlation may result in the migration of
software applications. For example, a software application
may be migrated from a first computing resource to a second

US 9,152,445 B2

3

computing resource based on an increase in the failure corre-
lation between the first computing resource and the comput-
ing resource on which an anti-affined software application is
placed.

Further, in exemplary embodiments, a placement rule is
provided to a computing resource container when placing
affined or anti-affined software applications in the same com-
puting resource container. The computing resource container
enforces the placement rule when allocating the software
applications to computing resources managed by the comput-
ing resource container, enabling the placement rule to be
satisfied even though the individual computing resources may
be inaccessible outside the computing resource container. For
example, the computing resource container may ensure that
affined software applications are associated with the same
computing resource, and that anti-affined software applica-
tions are associated with different computing resources.

FIG. 1 is a block diagram of an exemplary computing
device 100. Computing device 100 includes a processor 102
for executing instructions. In some embodiments, executable
instructions are stored in a memory 104. Memory 104 is any
device allowing information, such as executable instructions,
software applications, placement rules (e.g., affinity rules
and/or anti-affinity rules), failure correlations, performance
correlations, performance metrics, configuration hierarchies,
associations of software applications with computing
resources and/or computing resource containers, and/or other
data, to be stored and retrieved. For example, memory 104
may include one or more random access memory (RAM)
modules, flash memory modules, hard disks, solid state disks,
and/or optical disks.

Computing device 100 also includes at least one presenta-
tion device 106 for presenting information to a user 108.
Presentation device 106 is any component capable of convey-
ing information to user 108. Presentation device 106 may
include, without limitation, a display device (e.g., a liquid
crystal display (LCD), organic light emitting diode (OLED)
display, or “electronic ink™ display) and/or an audio output
device (e.g., a speaker or headphones). In some embodi-
ments, presentation device 106 includes an output adapter,
such as a video adapter and/or an audio adapter. An output
adapter is operatively coupled to processor 102 and config-
ured to be operatively coupled to an output device, such as a
display device or an audio output device.

The computing device 100 may include a user input device
110 for receiving input from user 108. User input device 110
may include, for example, a keyboard, a pointing device, a
mouse, a stylus, a touch sensitive panel (e.g., atouch pad or a
touch screen), a gyroscope, an accelerometer, a position
detector, and/or an audio input device. A single component,
such as a touch screen, may function as both an output device
of presentation device 106 and user input device 110.

Computing device 100 also includes a network communi-
cation interface 112, which enables computing device 100 to
communicate with a remote device (e.g., another computing
device 100) via a communication medium, such as a wired or
wireless packet network. For example, computing device 100
may transmit and/or receive data via network communication
interface 112. User input device 110 and/or network commu-
nication interface 112 may be referred to as an input interface
114 and may be configured to receive information from a user.

Computing device 100 further includes a storage interface
116 that enables computing device 100 to communicate with
one or more datastores, which store virtual disk images, soft-
ware applications, data associated with software applications,
and/or any other data suitable for use with the methods
described herein. In exemplary embodiments, storage inter-

10

15

20

25

30

35

40

45

50

55

60

65

4

face 116 couples computing device 100 to a storage area
network (SAN) (e.g., a Fibre Channel network) and/or to a
network-attached storage (NAS) system (e.g., via a packet
network). The storage interface 116 may be integrated with
network communication interface 112.

In exemplary embodiments, memory 104 stores computer-
executable instructions for performing one or more of the
operations described herein. Memory 104 may include one or
more computer-readable storage media that have computer-
executable components embodied thereon. In the example of
FIG. 1, memory 104 includes a correlation component 120, a
rule component 122, and a placement component 124.

When executed by processor 102, correlation component
120 causes processor 102 to determine a plurality of failure
correlations between a plurality of computing resources.
Each failure correlation corresponds to a pair of computing
resources and is determined based on a failure correlation
received from a user, a failure correlation received from a
resource manager associated with the pair of computing
resources, a configuration hierarchy indicating hardware
associated with the pair of computing resources, and/or per-
formance metrics associated with the pair of computing
resources.

When executed by processor 102, rule component 122
causes processor 102 to receive via an input interface a place-
ment rule, such as an affinity rule indicating that a first soft-
ware application is to be co-located with a second software
application during execution of the first and second software
applications, or an anti-affinity rule indicating that the first
software application is to be separated from the second soft-
ware application during execution of the first and second
software applications. Rule component 122 also causes pro-
cessor 102 to select failure correlations corresponding to a
first computing resource, which is associated with the first
software application, and to select one of the plurality of
computing resources other than the first computing resource
that corresponds to a lowest failure correlation among the
selected failure correlations. In addition, or alternatively, rule
component 122 causes processor 102 to select a target com-
puting resource container based on the placement rule and a
computing resource container that is associated with the first
software application.

When executed by processor 102, placement component
124 causes processor 102 to associate the second software
application with the selected computing resource based on
the anti-affinity rule. In addition, or alternatively, placement
component 124 may cause processor 102 to transmit a place-
ment request associated with the second software application
to the target computing resource container via a communica-
tion interface, and to transmit the placement rule to the target
computing resource container via the communication inter-
face.

Embodiments are described herein with reference to vir-
tual machines (VMs). However, it is contemplated that the
methods described may be applied to any type of software
application.

FIG. 2 depicts a block diagram of VMs 2351, 2352 . ..
235N that are instantiated on a computing device 100, which
may be referred to as a host computing device or simply a
host. Computing device 100 includes a hardware platform
205, such as an x86 architecture platform. Hardware platform
205 may include processor 102, memory 104, network com-
munication interface 112, user input device 110, and other
input/output (I/O) devices, such as a presentation device 106
(shown in FIG. 1). A virtualization software layer, also
referred to hereinafter as a hypervisor 210, is installed on top
of hardware platform 205.

US 9,152,445 B2

5

The virtualization software layer supports a virtual
machine execution space 230 within which multiple virtual
machines (VMs 2351-235N) may be concurrently instanti-
ated and executed. Hypervisor 210 includes a device driver
layer 215, and maps physical resources of hardware platform
205 (e.g., processor 102, memory 104, network communica-
tion interface 112, and/or user input device 110) to “virtual”
resources of each of VMs 2351-235N such that each of VMs
2351-235N has its own virtual hardware platform (e.g., a
corresponding one of virtual hardware platforms 2401-
240N), each virtual hardware platform having its own emu-
lated hardware (such as a processor 245, a memory 250, a
network communication interface 255, a user input device
260 and other emulated I/O devices in VM 2351).

In some embodiments, memory 250 in first virtual hard-
ware platform 2401 includes a virtual disk that is associated
with or “mapped to”” one or more virtual disk images stored in
memory 104 (e.g., a hard disk or solid state disk) of comput-
ing device 100. The virtual disk image represents a file system
(e.g., a hierarchy of directories and files) used by first virtual
machine 2351 in a single file or in a plurality of files, each of
which includes a portion of the file system. In addition, or
alternatively, virtual disk images may be stored in memory
104 of one or more remote computing devices 100, such as a
datastore or a data storage container (e.g., in a storage area
network, or SAN, configuration). In such embodiments, any
quantity of virtual disk images may be stored by the remote
computing devices 100.

Device driver layer 215 includes, for example, a commu-
nication interface driver 220 that interacts with network com-
munication interface 112 to receive and transmit data from,
for example, a local area network (LAN) connected to com-
puting device 100. Communication interface driver 220 also
includes a virtual bridge 225 that simulates the broadcasting
of data packets in a physical network received from one
communication interface (e.g., network communication
interface 112) to other communication interfaces (e.g., the
virtual communication interfaces of VMs 2351-235N). Each
virtual communication interface for each VM 2351-235N,
such as network communication interface 255 for first VM
2351, may be assigned aunique virtual Media Access Control
(MAC) address that enables virtual bridge 225 to simulate the
forwarding of incoming data packets from network commu-
nication interface 112. In an embodiment, network commu-
nication interface 112 is an Ethernet adapter that is configured
in “promiscuous mode” such that all Ethernet packets that it
receives (rather than just Ethernet packets addressed to its
own physical MAC address) are passed to virtual bridge 225,
which, in turn, is able to further forward the Ethernet packets
to VMs 2351-235N. This configuration enables an Ethernet
packet that has a virtual MAC address as its destination
address to properly reach the VM in computing device 100
with a virtual communication interface that corresponds to
such virtual MAC address.

Virtual hardware platform 2401 may function as an equiva-
lent of a standard x86 hardware architecture such that any
x86-compatible desktop operating system (e.g., Microsoft
WINDOWS brand operating system, LINUX brand operat-
ing system, SOLARIS brand operating system, NETWARE,
or FREEBSD) may be installed as guest operating system
(OS) 265 in order to execute applications 270 for an instan-
tiated VM, such as first VM 2351. Virtual hardware platforms
2401-240N may be considered to be part of virtual machine
monitors (VMM) 2751-275N which implement virtual sys-
tem support to coordinate operations between hypervisor 210
and corresponding VMs 2351-235N. Those with ordinary
skill in the art will recognize that the various terms, layers,

25

30

40

45

55

6

and categorizations used to describe the virtualization com-
ponents in FIG. 2 may be referred to differently without
departing from their functionality or the spirit or scope of the
disclosure. For example, virtual hardware platforms 2401-
240N may also be considered to be separate from VMMs
2751-275N, and VMMs 2751-275N may be considered to be
separate from hypervisor 210. One example of hypervisor
210 that may be used in an embodiment of the disclosure is
included as a component in VMware’s ESX brand software,
which is commercially available from VMware, Inc.

FIG. 3 is a block diagram of an exemplary cluster system
300 of hosts 305 and virtual machines (VMs) 235. Cluster
system 300 includes a fault domain 310 with a first host 3051,
a second host 3052, a third host 3053, and a fourth host 3054.
Each host 305 executes one or more software application. For
example, first host 3051 executes first VM 2351, second VM
2352, and third VM 2353, and fourth host 3054 executes
fourth VM 2354. It is contemplated that fault domain 310 may
include any quantity of hosts 305 executing any quantity of
software applications. Further, VMs 235 hosted by hosts 305
may execute other software applications, such as instances of
network services (e.g., web applications and/or web ser-
vices), distributed computing software, and/or any other type
of software that is executable by computing devices 100
(shown in FIG. 1) such as hosts 305.

Hosts 305 communicate with each other viaa network 315.
Cluster system 300 also includes one or more management
devices 320, which are coupled in communication with hosts
305 via network 315. In exemplary embodiments, a manage-
ment device 320 monitors and controls hosts 305. For
example, management device 320 may monitor performance
metrics (e.g., application performance metrics and/or host
performance metrics) associated with hosts 305 and may
further coordinate the execution of VMs and/or other soft-
ware applications by hosts 305 based on the performance
metrics. One or more client devices 325 are coupled in com-
munication with network 315, such that client devices 325
may submit requests to hosts 305. For example, hosts 305
may execute instances of software applications that provide
data in response to requests from client devices 325.

Although management device 320 is shown outside fault
domain 310, the functions of management device 320 may be
incorporated into fault domain 310. For example, manage-
ment device 320 may be included in fault domain 310. Alter-
natively, the functions described with reference to manage-
ment device 320 may be performed by one or more hosts 305,
or VMs 235 executed by one or more hosts 305, in fault
domain 310. Hosts 305, management device 320, and/or cli-
ent device 325 may be computing devices 100.

Cluster system 300 includes a first datastore 330, a second
datastore 335, and a third datastore 340. In exemplary
embodiments, datastores 330, 335, 340 are stored in memory
104 (shown in FIG. 1) of one or more computing devices 100.
For example, datastores 330, 335, 340 may be stored in an
array of hard disk drives and/or solid state drives. Hosts 305
communicate with datastores 330, 335, 340 via a storage
network 345. For example, storage network 345 may include
a storage area network (SAN) using a protocol such as Fibre
Channel and/or Internet Small Computer System Interface
(iSCSI). As another example, storage network 345 may
include a network-attached storage (NAS) system using a
protocol such as Server Message Block (SMB) and/or Net-
work File System (NFS). In exemplary embodiments, VMs
235 are associated with virtual disk images, configuration
files, and/or other data stored in file systems provided by
datastores 330, 335, 340. Although storage network 345 is

US 9,152,445 B2

7

illustrated as separate from network 315, in some embodi-
ments, storage network 345 may be combined with network
315.

Cluster system 300 may also include a resource manager
350 that is coupled to network 315 and/or to storage network
345. Resource manager 350 is associated with (e.g., monitors
and/or manages) computing resources, such as hosts 305
and/or datastores 330, 335, 340. In exemplary embodiments,
resource manager 350 maintains, and provides to manage-
ment device 320, a configuration hierarchy that indicates
hardware associated with computing resources monitored
and/or managed by resource manager 350. For example, a
configuration hierarchy may indicate the datacenters
included in a facility, the server racks included in a datacenter,
the server enclosures included in a rack, the hosts included in
a server enclosure, and the disks included in a host. Similarly,
a configuration hierarchy may indicate communication links
(e.g., network paths) that are used by computing resources.

FIG. 4 is a flowchart of an exemplary method 400 for
associating a software application with a computing resource
based on failure correlation information. Although the opera-
tions in method 400 are described with reference to monitor-
ing device 320 (shown in FIG. 3), it is contemplated that any
portion of such operations may be performed by any comput-
ing device 100 (shown in FIG. 1). Further, computing
resources such as hosts and datastores are described below,
but method 400 may be practiced with respect to network
equipment and/or any other computing resource used by soft-
ware applications.

Referring to FIGS. 3 and 4, in exemplary embodiments,
management device 320 determines 405 (e.g., receives via an
input interface 114, shown in FIG. 1) an anti-affinity rule
indicating that a first software application, such as first VM
2351, is to be separated from a second software application,
such as second VM 2352, during execution of the first and
second software applications. In addition, or alternatively,
one or more anti-affinity rules (e.g., default rules or previ-
ously received rules) may be stored at management device
320.

Management device 320 determines 410 a plurality of
failure correlations between a plurality of computing
resources in cluster system 300, such as hosts 305 and/or
datastores 330, 335, 340. Each failure correlation corre-
sponds to a pair of computing resources and represents a
probability that a failure of the first computing resource in the
pair will be concurrent with a failure of the second computing
resource in the pair.

A failure correlation may be expressed as a value between
a minimum value, representing no correlation of failures
between the pair of computing resources, and a maximum
value, representing a highest possible correlation of failures
between the pair of computing resources. For example, a
failure correlation may be expressed as a binary value, with
false or zero representing no correlation of failures, and true
or one representing a correlation of failures. As another
example, a failure correlation may be expressed as a real
number (e.g., an integer or a floating point value) and/or as an
element of an enumeration (e.g., values such as low, medium,
and high) within a range specified by the minimum value and
the maximum value. Whether binary, real, or enumerated,
failure correlations corresponding to two pairs of computing
resources may be compared, with the lower failure correla-
tion indicating a lower probability that failures are correlated
between the corresponding pair of computing resources.

In exemplary embodiments, management device 320
determines 410 a failure correlation between a pair of com-
puting resources based on a failure correlation (e.g., a manu-

5

10

20

25

30

40

45

50

55

60

65

8

ally entered value) received from a user, a failure correlation
from a resource manager associated with the pair of comput-
ing resources, a configuration hierarchy indicating hardware
associated with the pair of computing resources, and/or per-
formance metrics associated with the pair of computing
resources.

In some embodiments, management device 320 deter-
mines 407 (e.g., accesses and/or receives) a configuration
hierarchy that indicates hardware associated with the pair of
computing resources. For example, hosts included in the
same server enclosure or in the same server rack may share a
power source and/or a communication link to network 315.
Accordingly, failures between such hosts may be more highly
correlated than failures between either of such hosts and a
host in another server rack or another datacenter. Similarly,
failures between datastores provided by the same disk or disk
array may be more highly correlated than failures between
either of such datastores and a datastore provided by another
disk array or another datacenter. In some embodiments, a
highest level in the hierarchy at which the computing
resources are associated with the same hardware is deter-
mined, and the failure correlation is positively correlated with
(e.g., proportional to) the distance from this level to the top of
the configuration hierarchy.

In some embodiments, management device determines
407 (e.g., accesses and/or receives) performance metrics
associated with a pair of computing resources and determines
410 a failure correlation based on the performance metrics.
For example, a performance correlation indicated by such
performance metrics (e.g., concurrent performance degrada-
tions) may be used to infer a failure correlation. Performance
metrics may include input/output (/O) latency, I/O through-
put, network latency, network bandwidth, and/or any other
measurement indicating the performance of a computing
resource. Performance metrics may be collected during nor-
mal operation of a computing resource. In addition, or alter-
natively, performance metrics may be collected while inten-
tionally inducing a performance degradation of one or more
computing resources, such as by saturating a communication
link used by a computing resource with I/O traffic and/or
network traffic. In some embodiments, a performance corre-
lation corresponding to a first computing resource and a sec-
ond computing resource is calculated by creating a parallel
time series of the first and second performance metrics asso-
ciated with the first and second computing resources, respec-
tively. The failure correlation may be determined 410 based
on (e.g., may be equal to) the performance correlation.

In some embodiments, management device 320 deter-
mines 410 a failure correlation between a first computing
resource and a second computing resource using one of the
techniques described above in an order of preference. In one
example, when a failure correlation corresponding to the first
and second computing resources is indicated by a user, man-
agement device 320 determines the failure correlation based
on the failure correlation indicated by the user. When no
failure correlation corresponding to the first and second com-
puting resources is indicated by a user, and a failure correla-
tion is indicated by a resource manager associated with the
first and second computing resources, management device
320 determines the failure correlation based on the failure
correlation indicated by the resource manager. When no fail-
ure correlation corresponding to the first and second comput-
ing resources is indicated by a user or by a resource manager,
management device 320 determines the failure correlation
based on performance metrics associated with the first and
second computing resources.

US 9,152,445 B2

9

Management device 320 identifies 415 the computing
resource(s) associated with first VM 2351. For example, man-
agement device 320 may store associations of software appli-
cations with computing resources and/or may receive such
associations from resource manager 350. In the scenario
described, first VM 2351 is associated with a first computing
resource, such as first datastore 330 or first host 3051. For
example, a virtual disk associated with first VM 2351 may be
stored in first datastore 330 and/or first VM 2351 may be
currently executed by first host 3051.

Management device 320 selects 420, from the determined
failure correlations, the failure correlations corresponding to
the first computing resource. For example, if the first com-
puting resource is first datastore 330, management device 320
selects 420 second datastore 335 and third datastore 340.

In exemplary embodiments, management device 320
selects 425 the computing resource that corresponds to a
lowest failure correlation among the plurality of failure cor-
relations selected 420. For example, if failure correlations are
expressed as binary values, management device 320 selects
425 a computing resource corresponding to a failure correla-
tion of zero (also referred to as false) over a computing
resource corresponding to a failure correlation of one (also
referred to as true). As another example, if failure correlations
are expressed as real numbers or enumerated values, manage-
ment device 320 selects 425 a computing resource corre-
sponding to a failure correlation closest to a predetermined
minimum value (e.g., a failure correlation with a numerically
lowest value) within the selected correlation values.

Based on the anti-affinity rule indicating that the first soft-
ware application (e.g., first VM 2351) is to be separated from
the second software application (e.g., second VM 2352),
management device 320 associates 430 the second software
application with the selected available computing resource.
For example, if second VM 2352 is not currently associated
with a computing resource, management device 320 may
associate 430 second VM 2352 with the second computing
resource by copying data associated with the second VM
2352 to a datastore or by instructing a host 305 to execute
second VM 2352. Further, if second VM 2352 is currently
associated with a computing resource, management device
320 may migrate second VM 2352 from a currently associ-
ated computing resource (e.g., second datastore 335) to the
selected computing resource (e.g., third datastore 340), such
as by deleting data associated with second VM 2352 from a
datastore or by instructing a host 305 to terminate second VM
2352.

Some embodiments facilitate “soft” enforcement of an
anti-affinity rule. In such embodiments, before associating
430 second VM 2352 with the selected computing resource,
management device 320 determines 427 whether such an
association 430 will violate a rule other than the anti-affinity
rule being applied. The other rule may include another anti-
affinity rule, an affinity rule, a rule governing the load (e.g.,
resource utilization) associated with the selected computing
resource, and/or any other rule enforced by management
device 320. If no other rule will be violated, management
device 320 proceeds to associate 430 second VM 2352 with
the selected computing resource. If another rule will be vio-
lated, and more computing resources are available, manage-
ment device 320 disregards the selected computing resource
and selects 425 the computing resource corresponding to the
next lowest failure correlation.

If another rule will be violated and no more computing
resources are available, management device 320 reports 428
aplacement error. For example, management device 320 may
store the placement error in a database, provide the placement

10

15

20

25

30

40

45

50

55

60

65

10

error in a cluster management user interface, and/or transmit
a notification of the placement error to another device (e.g.,
client device 325). Management device 320 proceeds to again
determine 410 failure correlations, optionally determining
407 a configuration hierarchy and/or performance metrics, as
described above. Accordingly, management device 320 may
subsequently determine 427 that associating 430 the second
VM with the selected computing resource will no longer
violate a rule other than the anti-affinity rule and proceed to
perform such an association 430.

Further, in some embodiments, a separation level is asso-
ciated with the anti-affinity rule. The separation level indi-
cates a level in a configuration hierarchy below which the first
software application and the second application are to be
separated. In such embodiments, management device 320
selects 425 the computing resource based further on deter-
mining that the selected computing resource is separate from
the first computing resource at or above the separation level.

In exemplary embodiments, management device 320 per-
forms method 400 repeatedly (e.g., periodically, continually,
and/or upon request). Repeatedly performing method 400
facilitates detecting and responding to changing circum-
stances in cluster system 300. For example, management
device 320 may determine 410 updated failure correlations
indicating a change in the failure correlation between a par-
ticular pair of computing resources. As another example,
management device 320 may identify 415 a change in the
computing resource with which a software application is
associated. Such changes may result in a violation of an
anti-affinity rule, which can be corrected by management
device 320, as described above.

In some embodiments, individual computing resources are
not accessible by management device 320. For example, a
computing resource container may allocate computing
resource utilization among a plurality of computing resources
(e.g., hardware devices) and prevent direct access to such
computing resources by management device 320. A comput-
ing resource container may include, for example, a distributed
computing container and/or a data storage container, such as
a disk array controller and/or a cloud storage system.

FIG. 5 is a block diagram of an exemplary cluster system
500 including a first computing resource container 505 and a
second computing resource container 510. First computing
resource container 505 and second computing resource con-
tainer 510 provide a plurality of computing resources 515,
which may include computing devices 100 (shown in FIG. 1)
and/or datastores such as first datastore 330 (shown in FIG.
3). For example, if the computing resources 515 are comput-
ing devices 105, computing resource containers 505, 510 may
operate as distributed computing containers that allocate
computing tasks (e.g., execution of software applications,
such as VMs) to computing devices 105. If the computing
resources 515 are datastores, computing resource containers
505, 510 may operate as data storage containers that allocate
data storage tasks (e.g., storage of virtual disk files) to datas-
tores.

Management device 320 is coupled in communication with
first computing resource container 505 and second computing
resource container 510 via network 315. In exemplary
embodiments, management device 320 receives container
information, such as available capacity (e.g., computing
capacity and/or data storage capacity) from first computing
resource container 505 and second computing resource con-
tainer 510 but may not be capable of directly associating
software applications with computing resources 515. Rather,
to perform placement of a software application, management
device 320 requests that first computing resource container

US 9,152,445 B2

11

505, for example, associate the software application with
some computing resource 515 to be selected by the first
computing resource container 505.

FIG. 6 is a flowchart of an exemplary method 600 for
associating a software application with a computing resource
container based on a placement rule. Referring to FIGS. 5 and
6, in exemplary embodiments, management device 320 deter-
mines 605 (e.g., receives via an input interface 114, shown in
FIG. 1) a placement rule, such as an affinity rule indicating
that a first software application (e.g., a first VM) is to be
co-located with a second software application (e.g., a second
VM) during execution of the first and second software appli-
cations, or an anti-affinity rule indicating that the first soft-
ware application is to be separated from the second software
application during execution of the first and second software
applications.

Management device 320 identifies 610 the computing
resource container that is associated with the first software
application. For example, management device 320 may store
associations of software applications and computing resource
containers and/or may receive such associations from first
computing resource container 505 and/or second computing
resource container 510. In the scenario described, the first
software application is associated with first computing
resource container 505. For example, data (e.g., a virtual disk)
associated with the first software application may be stored in
first computing resource container 505, or the first software
application may be currently executed by first computing
resource container 505.

Management device 320 selects a target computing
resource container based on the placement rule and the com-
puting resource container identified 610 as associated with
the first software application (e.g., first computing resource
container 505).

In exemplary embodiments, when the first software appli-
cation is to be co-located with the second software application
(e.g., the placement rule is an affinity rule), management
device 320 selects 615 the computing resource container that
is associated with the first software application as the target
computing resource container. Management device 320 asso-
ciates 620 the second software application with the target
computing resource container, such as by transmitting a
placement request referencing the second software applica-
tion to the target computing resource container, and provides
625 (e.g., transmits) the placement rule to the target comput-
ing resource container, such that the target computing
resource container can associate the second software appli-
cation with the same computing resource 515 with which the
first software application is already associated.

When the first software application is to be separated from
the second VM, management device 320 determines 630
whether a computing resource container other than the com-
puting resource container that is associated with the first
software application is available for placement of the second
software application. For example, management device 320
may determine 630 whether another computing resource con-
tainer has sufficient capacity to accommodate the second
software application.

If another computing resource container is available, man-
agement device selects 635 the other computing resource
container as the target computing resource container and
associates 640 the second software application with the target
computing resource container. In exemplary embodiments,
placing the second software application in a computing
resource container different from the one in which the first
software application guarantees that the first software appli-

5

10

15

20

25

30

35

40

45

50

55

60

65

12

cation and the second software application will be associated
with different computing resources 515.

When the first VM is to be separated from the second VM,
and no second computing resource container is available,
management device 320 selects 615 the computing resource
container associated with the first software application as the
target computing resource container and associates 620 the
second software application with the target computing
resource container, as described above. In addition, manage-
ment device 320 provides 625 the placement rule to the target
computing resource container. Accordingly, even though the
first and second software applications are placed in the same
computing resource container, the computing resource con-
tainer may enforce the placement rule by ensuring that the
first and second software applications are associated with
different computing resources 515, such as by performing
method 400, described above with reference to FIG. 4.

Some embodiments facilitate recovering from errors in
software application placement. For example, after associat-
ing 640 the second software application with a first target
computing resource container, management device 320 may
determine 645 that a placement error is received from the first
target computing resource container in response to the place-
ment request. In such a scenario, management device 320
determines 630 whether a computing resource container
other than the computing resource container associated with
the first software application is available for placement of the
second software application, disregarding the first target
computing resource container. Based on the determination
630, management device 320 proceeds as described above.
For example, if the first target computing resource container
is the only container other than the computing resource con-
tainer associated with the first software application, manage-
ment device 320 selects 615 the computing resource con-
tainer associated with the first software application as a
second target computing resource container.

As described above with reference to method 400 (shown
in FIG. 4), some embodiments facilitate soft enforcement of
an anti-affinity rule. In such embodiments, when the place-
ment rule is an affinity rule, before associating 620 the second
software application with the target computing resource con-
tainer, management device 320 determines 617 whether such
an association 620 will violate a rule other than the affinity
rule being applied. The other rule may include another place-
ment rule, a rule governing the load (e.g., resource utilization)
associated with the target computing resource container, and/
or any other rule enforced by management device 320. If no
other rule will be violated, management device 320 proceeds
to associate 620 the second software application with the
target computing resource container. If another rule will be
violated, management device 320 reports 618 a placement
error. For example, management device 320 may store the
placement error in a database, provide the placement error in
a cluster management user interface, and/or transmit a noti-
fication of the placement error to another device (e.g., client
device 325). Management device 320 proceeds to again iden-
tify 610 the computing resource container that is associated
with the first software application and continues as described
above.

When the placement rule is an anti-affinity rule, before
associating 640 the second software application with the tar-
get computing resource container, management device 320
determines 637 whether such an association 640 will violate
a rule other than the anti-affinity rule being applied. If no
other rule will be violated, management device 320 proceeds
to associate 640 the second software application with the
target computing resource container. If another rule will be

US 9,152,445 B2

13

violated, management device 320 disregards the target com-
puting resource container and proceeds to determine 630
whether another computing resource container other than the
computing resource container that is associated with the first
software application is available for placement of the second
software application, as described above. Computing
resource containers that have previously been selected 635,
and for which placement of the second software application
has been determined 637 to violate another rule, are consid-
ered unavailable. Accordingly, if placement of the second
software application at each computing resource container
other than the computing resource container that is associated
with the first software application will result in a violation of
a rule, management device 320 selects 615 the computing
resource container that is associated with the first software
application as the target computing resource container.

In exemplary embodiments, management device 320 per-
forms method 600 repeatedly (e.g., periodically, continually,
and/or upon request). Repeatedly performing method 600
facilitates detecting and responding to changing circum-
stances in cluster system 500. For example, management
device 320 may determine 630 that a previously unavailable
computing resource container has become available, or that a
rule other than the placement rule will no longer be violated
by placement of a software application at a particular com-
puting resource container. As another example, management
device 320 may identify 610 a change in the computing
resource container with which a software application is asso-
ciated. Such changes may result in a violation of a placement
rule, which can be corrected by management device 320, as
described above.

The methods described may be performed by computing
devices 100 (shown in FIG. 1), such as management device
320 (shown in FIGS. 3 and 5). The computing devices com-
municate with each other through an exchange of messages
and/or stored data. A computing device may transmit a mes-
sage as a broadcast message (e.g., to an entire network and/or
data bus), a multicast message (e.g., addressed to a plurality
of other computing devices), and/or as a plurality of unicast
messages, each of which is addressed to an individual com-
puting device. Further, in some embodiments, messages are
transmitted using a network protocol that does not guarantee
delivery, such as User Datagram Protocol (UDP). Accord-
ingly, when transmitting a message, a computing device may
transmit multiple copies of the message, enabling the com-
puting device to reduce the risk of non-delivery.

Exemplary Operating Environment

The operations described herein may be performed by a
computer or computing device. A computer or computing
device may include one or more processors or processing
units, system memory, and some form of computer readable
media. Exemplary computer readable media include flash
memory drives, digital versatile discs (DVDs), compact discs
(CDs), floppy disks, and tape cassettes. By way of example
and not limitation, computer readable media comprise com-
puter-readable storage media and communication media.
Computer-readable storage media are tangible and non-tran-
sitory and store information such as computer readable
instructions, data structures, program modules, or other data.
Communication media, in contrast, typically embody com-
puter readable instructions, data structures, program mod-
ules, or other data in a transitory modulated data signal such
as a carrier wave or other transport mechanism and include
any information delivery media. Combinations of any of the
above are also included within the scope of computer read-
able media.

20

30

35

40

45

55

14

Although described in connection with an exemplary com-
puting system environment, embodiments of the disclosure
are operative with numerous other general purpose or special
purpose computing system environments or configurations.
Examples of well known computing systems, environments,
and/or configurations that may be suitable for use with
aspects of the disclosure include, but are not limited to,
mobile computing devices, personal computers, server com-
puters, hand-held or laptop devices, multiprocessor systems,
gaming consoles, microprocessor-based systems, set top
boxes, programmable consumer electronics, mobile tele-
phones, network PCs, minicomputers, mainframe computers,
distributed computing environments that include any of the
above systems or devices, and the like.

Embodiments of the disclosure may be described in the
general context of computer-executable instructions, such as
program modules, executed by one or more computers or
other devices. The computer-executable instructions may be
organized into one or more computer-executable components
or modules. Generally, program modules include, but are not
limited to, routines, programs, objects, components, and data
structures that perform particular tasks or implement particu-
lar abstract data types. Aspects of the disclosure may be
implemented with any number and organization of such com-
ponents or modules. For example, aspects of the disclosure
are not limited to the specific computer-executable instruc-
tions or the specific components or modules illustrated in the
figures and described herein. Other embodiments of the dis-
closure may include different computer-executable instruc-
tions or components having more or less functionality than
illustrated and described herein.

Aspects of the disclosure transform a general-purpose
computer into a special-purpose computing device when pro-
grammed to execute the instructions described herein.

The operations illustrated and described herein may be
implemented as software instructions encoded on a com-
puter-readable medium, in hardware programmed or
designed to perform the operations, or both. For example,
aspects of the disclosure may be implemented as a system on
a chip.

The order of execution or performance of the operations in
embodiments of the disclosure illustrated and described
herein is not essential, unless otherwise specified. That is, the
operations may be performed in any order, unless otherwise
specified, and embodiments of the disclosure may include
additional or fewer operations than those disclosed herein.
For example, it is contemplated that executing or performing
a particular operation before, contemporaneously with, or
after another operation is within the scope of aspects of the
disclosure.

When introducing elements of aspects of the disclosure or
the embodiments thereof, the articles “a,” “an,” “the,” and
“said” are intended to mean that there are one or more of the
elements. The terms “comprising,” “including,” and “having”
are intended to be inclusive and mean that there may be
additional elements other than the listed elements.

Having described aspects of the disclosure in detail, it will
be apparent that modifications and variations are possible
without departing from the scope of aspects of the disclosure
as defined in the appended claims. As various changes could
be made in the above constructions, products, and methods
without departing from the scope of aspects of the disclosure,
it is intended that all matter contained in the above description
and shown in the accompanying drawings shall be interpreted
as illustrative and not in a limiting sense.

US 9,152,445 B2

15
What is claimed is:
1. A system for associating a virtual machine (VM) with a
computing resource, the system comprising:
a memory for storing at least a first placement rule and a
second placement rule, the first placement rule indicat-
ing one of the following: that a first virtual machine
(VM) is to be co-located with a second VM during
execution of the first and a second VM, or that the first
VM is to be separated from the second VM during
execution of the first and second VMs; and
a processor programmed to:
when the first VM is to be co-located with the second
VM under the first placement rule, separate the first
VM from the second VM when the second placement
rule is violated by enforcing the first placement rule;
and

when the first VM is to be separated from the second VM
under the first placement rule, co-locate the first VM
with the second VM when the second placement rule
is violated by enforcing the first placement rule.

2. The system of claim 1, wherein the first VM is associated
with a first computing resource container, wherein separating
the first VM from the second VM comprises placing the
second VM in a second computing resource container, and
wherein co-locating the first VM with the second VM com-
prises placing the second VM in the first computing resource
container.

3. The system of claim 2, wherein the second placement
rule is a rule governing a load associated with the first com-
puting resource container and the second computing resource
container.

4. The system of claim 3, wherein when the first VM is to
be co-located with the second VM in the first computing
resource container under the first placement rule, place the
second VM in the second computing resource container when
a computing resource load on the first computing resource
container would exceed a threshold level if the first VM and
the second VM were co-located in the first computing
resource container; and

wherein when the first VM is to be separated from the
second VM by placing the second VM in the second
computing resource container under the first placement
rule, co-locate the first VM with the second VM in the
first computing resource container when a computing
resource load on the second computing resource con-
tainer would exceed a threshold level if the second VM
was added to the second computing resource container.

5. The system of claim 1, wherein the second placement
rule is an anti-affinity rule.

6. The system of claim 4, wherein the second placement
rule further comprises a separation threshold level, the sepa-
ration threshold level defining a level of separation the second
VM is to be separated from the first VM.

7. The system of claim 1, wherein the second placement
rule is an affinity rule.

8. A method comprising:

receiving, by a management device, a first placement rule
and a second placement rule, the first placement rule
indicating one of the following: that a first virtual
machine (VM) is to be co-located with a second VM
during execution ofthe first and a second VM, or that the
first VM is to be separated from the second VM during
execution of the first and second VMs;

when the first VM is to be co-located with the second VM
under the first placement rule, separating the first VM
from the second VM when the second placement rule is
violated by enforcing the first placement rule; and

10

15

20

25

30

35

40

45

50

55

60

65

16

when the first VM is to be separated from the second VM
under the first placement rule, co-locating the first VM
with the second VM when the second placement rule is
violated by enforcing the first placement rule.

9. The method of claim 8, wherein the first VM is associ-
ated with a first computing resource container, and wherein
separating the first VM from the second VM comprises plac-
ing the second VM in a second computing resource container.

10. The method of claim 8, wherein the first VM is associ-
ated with a first computing resource container, and wherein
co-locating the first VM with the second VM comprises plac-
ing the second VM in the first computing resource container.

11. The method of claim 8, wherein the second placement
rule is one of the following: an anti-affinity rule or an affinity
rule.

12. The method of claim 8, wherein the second placement
rule is a separation threshold level, the separation threshold
level defining a level of separation the second VM is to be
separated from the first VM.

13. The method of claim 8, wherein the second placement
rule is a rule governing a load associated with a target com-
puting resource container.

14. One or more computer-readable storage media having
computer-executable instructions stored thereon, that when
executed by a processor, instruct the processor to:

receive a first placement rule and a second placement rule,
the first placement rule indicating one of the following:
that a first virtual machine (VM) is to be co-located with
a second VM during execution of the first and a second
VM, or that the first VM is to be separated from the
second VM during execution of the first and second
VMs;

when the first VM is to be co-located with the second VM
under the first placement rule, separate the first VM from
the second VM when the second placement rule is vio-
lated by enforcing the first placement rule; and

when the first VM is to be separated from the second VM
under the first placement rule, co-locate the first VM
with the second VM when the second placement rule is
violated by enforcing the first placement rule.

15. The computer-readable storage media of claim 14,
wherein the first VM is associated with a first computing
resource container, and wherein separating the first VM from
the second VM comprises placing the second VM in a second
computing resource container.

16. The computer-readable storage media of claim 14,
wherein the first VM is associated with a first computing
resource container, and wherein co-locating the first VM with
the second VM comprises placing the second VM in the first
computing resource container.

17. The computer-readable storage media of claim 14,
wherein the second placement rule is one of the following: an
anti-affinity rule or an affinity rule.

18. The computer-readable storage media of claim 14,
wherein the second placement rule is a separation threshold
level, the separation threshold level defining a level of sepa-
ration the second VM is to be separated from the first VM.

19. The computer-readable storage media of claim 14,
wherein the second placement rule is a rule governing a load
associated with a target computing resource container.

20. The computer-readable storage media of claim 14,
wherein separating the first VM from the second VM when
the second placement rule is violated by enforcing the first
placement rule comprises selecting a computing resource to
place the second VM that corresponds to a next lowest failure
correlation.

